The Le’s research group is interested in molecular mechanisms by which disturbed blood flow causes endothelial cell inflammation, dysfunction, apoptosis, and atherosclerotic plaque formation. Dr. Le and colleagues have developed both in vitro and in vivo systems to address this topic, and has identified a crucial role for the p90RSK-ERK5 kinase complex in this process. Dr. Le and colleagues have also discovered the formation of a pro-inflammatory and pro-senescence complex comprising p90RSK, a member of the shelterin complex, and p65. In addition, the role of endothelial ERK5 kinase in the regulation of statin-induced anti-inflammatory effect was also demonstrated using murine heart transplantation model. Recently, Dr. Le and colleagues have identified that a membrane-associated guanylate kinase-1 (MAGI1) is an unexplored molecule that regulates both endothelial inflammation and anti-viral response.

Besides the significant improvement in patient survival rate, modern cancer therapies including chemotherapy, immunotherapy, radiotherapy, targeted therapy, and surgery cause not only cardio-toxicity but also vascular complications such as angina (spasm), myocardial infarction, venous or arterial thrombosis, and newly developed or worsened hypertension. The Le’s research group is also interested in understand how cancer therapies mediates vascular complications.

View Faculty Profile